In-medium modifications of hadrons can be related to the density dependence of QCD condensates via QCD sum rules. The impact of the renormalization invariant combination $\langle q\bar{q}\rangle$ in QCD sum rules for light vector mesons is numerically small. Instead, four-quark condensates essentially drive the change of spectral properties of light vector mesons in nuclear matter. We present a generic catalog of four-quark condensates and compare the structures appearing in baryon and meson sum rules in the light quark sector. The nucleon self-energies at finite density are revisited and evaluated in this framework. For comparisons to advanced nuclear matter calculations. For the ω-meson, qualitative findings in photoproduction data from the CB-TAPS collaboration are analyzed, cf. [1]. This allows to constrain the density dependence of special combinations of four-quark condensates. [1] R. Thomas, S. Zschocke and B. Kämpfer, Phys. Rev. Lett. 95, 232301 (2005).