Structure Determination of Noble Metal Clusters by Trapped Ion Electron Diffraction

A. Lechtken¹, D. Schooss¹*, J. Stairs¹, M. N. Blom¹, and M. M. Kappes¹,²

¹.Institut für Nanotechnologie, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
². Institut für Physikalische Chemie, Universität Karlsruhe, D-76128 Karlsruhe, Germany

*corresponding author: detlef.schooss@int.fzk.de

The structures of noble metal cluster ions have been studied by the recently developed technique of trapped ion electron diffraction (TIED) [1]. In brief, cluster ions are generated by a magnetron sputter source and injected into a quadrupole ion trap. After mass selection and thermalization, the trapped ions are irradiated with a 40 keV electron beam. The resulting diffraction pattern is integrated with a CCD detector. The assignment of the cluster structures is done via a comparison of the experimental and simulated scattering function, calculated from density functional theory structure calculations.

The structures of mass selected silver cluster cations Ag_{19}^+, Ag_{38}^+, Ag_{55}^+, Ag_{59}^+, Ag_{75}^+ and Ag_{79}^+ have been investigated [2]. The resulting experimental data are best described by structures based on the icosahedral motif, while closed packed structures could be ruled out.

![Figure 1: Comparison of experimental (open circles) and model (line) reduced molecular diffraction functions sM for the icosahedral isomer of Ag_{55}^+ (inset) at 100K. The lower trace shows the residual.](image)

Additionally, we present a comparison of the structures of $\text{Cu}_{20}^{+/-}$, $\text{Ag}_{20}^{+/-}$ and $\text{Au}_{20}^{+/-}$. Our findings show unambiguously that the structure of Au_{20}^- is given by a tetrahedron in agreement with the results of L.S. Wang et al. [3]. In contrast, structures of Ag_{20}^{+} and $\text{Cu}_{20}^{+/-}$ based on the icosahedral motif agree best with the experimental data. Small structural differences between the charge states are observed. The possibilities and limitations of the TIED method are discussed.