Three-dimensional Photonic Crystals: Fabrication, characterization and physics

M. Wegener1,2, M. Deubel3,2, G. von Freymann3,2, S. Pereira4,2, K. Busch4,2, C.M. Soukoulis5, A. Kaso6 und S. John6
1Institut für Angewandte Physik, Wolfgang-Gaede-Straße 1, Universität Karlsruhe (TH), D-76131 Karlsruhe, Germany
2DFG-Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
3Institut für Nanotechnologie, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Postfach 3640, D-76021 Karlsruhe, Germany
4Institut für Theorie der Kondensierten Materie, Wolfgang-Gaede-Straße 1, Universität Karlsruhe (TH), D-76131 Karlsruhe, Germany
5Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, U.S.A.
6Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

Photonic Crystals can be viewed as semiconductors for light. Despite intensive efforts throughout the past decade, the holy grail of inexpensive fabrication techniques for high-quality, large-scale three-dimensional Photonic Crystals with photonic gaps in the telecommunication range or even in the visible remains elusive. Here, we review our corresponding work along the lines of two compatible and complementary techniques, namely holographic lithography and direct laser writing. Results from optical spectroscopy are compared with detailed theoretical calculations, revealing the high quality of the structures.