Soft Phonon in the Incommensurate Phases of Bromine and Iodine studied by Raman scattering

T. Kume*, T. Hiraoka, Y. Ohya, S. Sasaki, and H. Shimizu, Gifu University, Gifu, Japan
Email: kume@cc.gifu-u.ac.jp

Summary
A new phase of solid bromine was discovered at a pressure region above 80 GPa by Raman scattering experiments with a diamond anvil cell. This phase was found to be the same as the iodine phase V with an incommensurate structure (Takemura 2003) which appears between the molecular phase I and the monatomic phase II. In the incommensurate phases of bromine and iodine, Raman active soft modes were clearly found in the low frequency region. The Raman data suggest that the monoatomic phase II occurs above 30 and 115 GPa for iodine and bromine, respectively.

Introduction
Simple molecular solids have been an important subject for high pressure scientists. Under extreme conditions attained by applying high pressure, the distance between the neighbouring molecules becomes comparable to the atomic distance in the molecule. This condition causes various interesting phenomena; the covalent electrons bound in the molecules become delocalized, giving rise to evolutions of electronic states such as the insulator-metal transition. When the inter- and intra-molecular distances are identical, we cannot identify the molecules in the solid any more. Thus, the so-called molecular dissociation is attained, and the monatomic phase is formed.

Up to now, various diatomic-molecular solids such as hydrogen (Mao 1989, Magao 1997, Narayana 1998, Johnson 2000), oxygen (Desgreniers 1990, Shimizu 1998, Goncharov 2000), nitrogen (Eremets 2001), and halogens (Takemura 2003, Takemura 1982, Olijnyk 1994, Luty 1988, Congeduti 2001, Fujii 1989, Fujihisa 1995, Shimizu 1996, Johannsen 1983, Akahama 1998, Yamaguchi 1998) have been investigated under high pressure. Recently, for iodine, a new phase was discovered between the molecular phase I and monatomic phase II by high-pressure x ray diffraction study (Takemura 2003). The intermediate phase V takes an incommensurate structure (Fig. 1), which is approximately formed by modulating the phase-II structure. Although a lot of materials are known to show the incommensurate structures (Cummins 1990), phase V in iodine is intriguing in the sense that it appears just before the molecular dissociation, suggesting that the incommensurate structure is an important key of the molecular dissociation.

For bromine where the molecular dissociation takes place around 84 GPa (Fujii 1989), the incommensurate phase is expected to exist at very high pressures. In the present work we investigate phase V of bromine as well as iodine with high-pressure Raman spectroscopy which is able to detect the vibrational mode peculiar to the incommensurate structure. These high pressure Raman experiments allowed us to identify the incommensurate phase V in bromine, to discover a soft phonon mode in phase V for both bromine and iodine, and to recognize the molecular dissociation process as successive transitions from commensurate to incommensurate to normal phase.

Experimental
The high-pressure experiments for bromine were carried out using a diamond anvil cell (DAC) with beveled anvils with 0.1 mm culet. A hole of 0.03 mm in diameter drilled in a pre-indented tungsten gasket of 0.02 mm thickness, served as the sample chamber. Liquid bromine was loaded into the chamber of DAC with a syringe. To avoid chemical reaction, the sample preparation was done in a glove box filled with nitrogen gas. The set up for iodine...
was essentially the same as for bromine, except that the anvils were of single culet of 0.3 mm and the sample was powder. No pressure medium was used for both bromine and iodine. Raman spectra were measured in a back-scattering geometry with a spectrometer (JASCO NR 1800) equipped with a triple monochromator and a charge coupled device detector. Radiation of 532 nm from a solid-state laser (Verdi2W) was used for excitation of the Raman spectra. The illuminated spot for the Raman measurements was less than 5 micron in size. All the spectra were measured at room temperature. Pressure was calibrated on the basis of the following method. At high pressure around 100 GPa, the pressure gradient becomes more remarkable in the sample chamber. We estimated the pressure at the sample point, using the first order diamond-Raman signal simultaneously obtained on the Raman measurements. The pressure induced shift of diamond signal was, in advance, calibrated with ruby fluorescence frequency.

Results and Discussion

Figs. 2 (a) and (b) show Raman spectra obtained for iodine and bromine up to 30 and 108 GPa, respectively. In the pressure region of < 20 GPa for iodine and < 80 GPa for bromine, the spectra were basically the same as those previously reported (Olijnyk 1994, Johannsen 1983, Akahama 1998). For both iodine and bromine, we observed the four distinct bands from two librational modes (A_g^{(L)}, B_{3g}^{(L)}) and two stretching modes (A_g^{(S)}, B_{3g}^{(S)}) and the X band (open circles) which has already been reported for iodine but not yet been assigned (Olijnyk 1994). It should be discussed at first that the Raman spectrum drastically changes, and a new Raman band marked with the solid circle grows up at 80 GPa for bromine, and at 23...
GPa for iodine. The new bands originate neither from monatomic phase II nor from molecular phase I, because phase II with one atom per primitive unit cell has no Raman band, and phase I has not shown any band in this low frequency region. Furthermore, the pressure at which the new band appears for iodine is consistent with that reported for the incommensurate phase V (Takemura 2003). Consequently, the new Raman bands found in bromine and iodine come from the intermediate phase V with incommensurate structure.

As well known, the incommensurate phase always has two types of characteristic vibrational modes, i.e., the amplitude (AMP) mode (The vibrational pattern is schematically illustrated in Fig. 1) and the phase mode (Cummins 1990). Among them, the former mode is always Raman active because the vibrational motion of the AMP mode preserves the symmetry of the modulation wave (Yamaguchi 1998). Since only one vibrational band was observed in phase V, the new band can be assigned to an AMP mode peculiar to the incommensurate structure. As can be seen in Fig. 2, the AMP mode (solid circle) was observed simultaneously with the vibrational bands in phase I at 84 GPa (23 GPa) for bromine (for iodine), demonstrating the coexistence of phase I and V. The coexistence of these phases means that the transition between phases I and V is of first order, consistent with previous work for iodine. The observed pressure range of coexistence is hatched in Fig. 3.

In Figs. 3 (a) and (b), the AMP modes are found to show softening behavior. The monatomic phase seems to be realized at a critical pressure P_c at which the frequency of AMP mode becomes zero. In an attempt to estimate P_c, the pressure dependence of the AMP-mode frequency was fitted by a phenomenological function of $\omega = (\omega_0^2 - aP)^{1/2}$ (Aoki, 1996). As a result, P_c’s giving $\omega = 0$ were estimated to be 31 and 118 GPa for iodine and bromine, respectively. Since the transition between phases V and II is of first order, the phase transition is thought to occur just below P_c. Indeed, for iodine the transition pressure was reported as 30 GPa (Takemura 2003). Thus, the transition for bromine is thought to take place around 115 GPa.
Also for phase I, two vibrational bands (denoted with $A_g^{(L)}$ and X) show softening behavior just before molecular dissociation (Fig. 3). We now discuss the soft mode related with the molecular dissociation. The existence of the soft mode has been suggested by considering the molecular dissociation as a displacive structural phase transition. Taking the structure of phase II as a parent structure, the molecular phase I can be formed by atomic displacements expressed by a modulation wave commensurate with the lattice periodicity of phase II (Takemura 1982, Luty 1988). The modulation function has been decomposed into two waves (Takemura 1982), that is, a primary transverse wave with $\mathbf{q} = \frac{1}{4}(\mathbf{a}_{II}^* + \mathbf{c}_{II}^*)$ indicated in Fig. 1, and a secondary longitudinal wave with a wave vector of $2\mathbf{q}$, where \mathbf{a}_{II}^* and \mathbf{c}_{II}^* are the reciprocal lattice vectors in phase II. The phonons corresponding to these modulation waves are the candidates for the soft phonon. Since the eigenvector of the $A_g^{(L)}$ mode was theoretically predicted to be along b axis at high pressures (Yamaguchi 1998), the vibrational pattern is seen to be the same as one of the modulation wave (the transverse wave in the above). Thus, the $A_g^{(L)}$ mode can be accepted as the soft mode. For the X band which also shows the softening and has not been assigned, the discussion will be made later. It should be noted that both the AMP and $A_g^{(L)}$ modes can be represented by transverse standing waves with identical direction of oscillation (Fig. 1). Only the magnitude of the wavevector is different; the AMP mode has the wavevector of, e.g., $0.26a_v^* \sim 1/8(a_{II}^* + c_{II}^*)$ at 24.6 GPa for iodine (Takemura 2003), while the $A_g^{(L)}$ mode $1/4(a_{II}^* + c_{II}^*)$. Therefore, we conclude that the soft mode in phase V (AMP mode) is essentially the same as that in phase I ($A_g^{(L)}$ mode).

The above consideration allows us to recognize the molecular dissociation of bromine and iodine to be well-known successive phase transitions (Yamaguchi 1998) from the commensurate (phase I) to incommensurate (phase V) to normal (phase II) phase. These
types of phase transitions have been reported for a lot of materials including the solid element uranium (van Smaalen 1987, Marmeggi 2000). However, the present cases of bromine and iodine are still unique in the sense that these types of transition are found in molecular dissociation of elements. As the driving force of the successive phase transitions, a coupling between a charge density wave and a phonon can be considered, as has been proposed by Luty and Raich.

Finally, let us now turn to the Raman spectral changes observed below 80 GPa for bromine. As seen in Fig. 2 (b), in the pressure lower than about 20 GPa, we observed four distinct Raman bands (Fig. 1), consistently with the previous Raman experiments (Johannsen 1983, Akahama 1998). However, around 25 GPa, we observed splitting in several peaks. The splitting is obvious for the $A_g^{(L)}$ mode, but is observed also for the other peaks of $B_{3g}^{(L)}, B_{3g}^{(S)}$ and $A_g^{(S)}$ modes. The split peaks seem to turn again into one around 60 GPa. According to x-ray absorption studies for bromine under high pressure, changes in the electronic properties were suggested to occur around 25 GPa (San Miguel 2000). Recent EXAFS experiments show an anomaly in the molecular bond length in this pressure region (San Miguel 2003). The present Raman splitting implies some structural changes. Since, however, the previous x-ray studies have reported no structural change (Fujii 1989, Fujihisa 1995), the possible structure is some weakly modulated structure. Further application of pressure causes the X band around 70 GPa. The X band increases in intensity with increasing pressure and suddenly disappears on the transition to phase V. According to the previous electrical conductivity measurements (Lynch 1966, Shimizu 1996), metallization for bromine takes place around 60-70 GPa, and for iodine at 16 GPa. The appearance of the X band seems to be linked with metallization. Although it is still difficult to identify the origin for the X band and the Y band, observed only for iodine, the bond charge distortion wave (Luty, 1988), induced by delocalization of the covalent electron, may play an important role for forming the unassigned bands.

Conclusion

The incommensurate phase V for bromine was discovered just before the molecular dissociation, following to that for iodine. A soft phonon mode, peculiar to the incommensurate phase was, clearly found for bromine and iodine. The observation of the soft phonon allowed us to understand the molecular dissociation as a successive phase transition of commensurate-incommensurate-normal phase. Although a lot of materials show the successive transition, the present case is unique in the sense that it is associated with molecular-dissociation transition for a solid of simple molecule. It is desirable that the present observation will motivate further theoretical and experimental investigations, to gain a better understanding of the lattice dynamics and of the way of the molecular dissociation for various other simple molecules like hydrogen, oxygen and so on.

References