Manufacturing of Large UHV Vessel

Xavier Sauge and Sylvain Blanchard

SDMS, Saint-Romans, France

sauge@sdms.fr

1° GEOMETRICAL SHAPE AND MAIN CHARACTERISTICS

2° ASSUMPTION AND CALCULATION RESULTS
 - Calculation method by means of finite element analysis such as ANSYS

3° MATERIAL AND SURFACE PREPARATION

4° CONSTRUCTION METHOD
 - Shop manufacture and site works

5° PERFORMANCES TO BE EXPECTED
 - Expected outgassing rate

6° MAGNETIC PERMEABILITY

7° SIZE OPTIMISATION AND PRECAUTION

8° WELDING CONSIDERATIONS IN RESPECT WITH UHV CONDITIONS
International Workshop on

EXTREME HIGH VACUUM - APPLICATION AND TECHNOLOGY (X-VAT)

April 23-25, 2003
Burg Liebenzell
Bad Liebenzell, Black Forest, Germany
International Workshop on Extrem High Vacuum - Application and Technology (X-VAT)
Manufacturing of large UHV vessels
Plan

- SDMS presentation
- General informations
- Achievements (ALCATEL, VIRGO)
- Tritium-β spectrometer
A few figures

- Founded in 1962
- Located near Grenoble (France)
- Issued capital 1 114 000 Euros
- Turnover 2002 : 13 000 000 Euros (50% export)
- Workforce : 100
SDMS
(19000 m²)
Workshop J

(20 tons & controlled atm.)
Workshop C
(50 tons)
Workshop H
(clean room)
Quality Assurance

ISO 9001 since 2001 by BVQI

ISO 9002 from 1992 to 2001 by AFAQ

Certified AD - HP0 by the TÜV Saarland (German standards)
Plan

- SDMS presentation
- General informations
- Achievements (ALCATEL, VIRGO)
- Tritium-\(\beta\) spectrometer
Process Cleanliness

- Not for an attractive appearance: to fulfil the requirements
- Cleanliness during procurement and manufacturing
- Qualified machining process (oils)
- Materials cleaning (tests and experience)
 - degreasing / rinsing / alkaline solution / rinsing / Drying / Bake-out
- Cleanliness during the assembly - clean rooms - handling with gloves - tools - straps...
- Shipment
- At each stage (contamination, scratch…)

International Workshop on Extreme High Vacuum Application and Technology / SDMS / sdms@sdms.fr /
Materials and surfaces

- Use of stainless steel X2CrNi 18-9 (1.4307- 304L) or X2CrNiMo 17-12-2 (1.4404- 316L) or 1.4429 (X2CrNiMoN 17-13-3) or 1.4406 (X2CrNiMoN 17-11-2)
- Mechanical polishing of plates in order to obtain a surface roughness value about 0.6 - 0.8 µ (beginning)
- Electropolishing of plates in order to obtain a final surface roughness value about 0.2 µ à 0.4 µ
- Cleaning (cleaning workshop)
- Baking at 400°C during 7 to 10 days
Performances

- Leak rate ($< 10^{-12}$ mbar l / s with RGA)
- Outgassing
 - see SDMS booklet « Outgassing - Results and Economic Consequences - SDMS »
 - Materials / Roughness
- Magnetic permeability
- Dimensional requirements
Plan

- SDMS presentation
- General informations

Achievements
(ALCATEL, VI RGO)

- Tritium-β spectrometer
SDMS achievements

- VIRGO UHV chambers (UHV / Outgassing rate)
- ALCATEL SPACE INDUSTRIES simulation chamber (dimensions)
 - Manufacturing process (quality plan)
 - Dimensional requirements (flanges)
 - Gaskets (HELICOFLEX)
 - Outgassing (oven, procedure)
 - Helium tests, RGA
 - Pumping system
LAPP

- VIRGO (18 tons)
- Date: 05/98
- 10 chambers 20m³
- Gravitational waves measurements
- UNS S30400 (304) UNS S30403 (304L)
LAPP (idem)

- 10^{-10} mbar
- Mechanical and inner electropolishing
LAPP (idem)

- HT 400°C (200 h)
- Outgassing rate
 - 10^{-14} mbar l / s . Cm²
- On site:
 - Bake-out 150°C
Alcatel Space Industries

- 130m³ Simulation chamber
- 5m in diameter
- HELIOS 1
- Ra 0.8µm
Alcatel Space Industries

- Chamber 450 m³
- Date: 12/97
- UNS S30403 / 304L / 1.4307
- Internal diameter: 6m
- Total Length: 16m
- Thickness: 15mm
- HELIOS2 tests (launched by ARIANE5)
- Clean room class 100
Alcatel Space
(1/10th scale model)
Flange (lower)
Wall plates on jig protected by plastic layer (class 100)
Lower part (class 100 inside)
Upper and middle parts
Handling

International Workshop on Extreme High Vacuum Application and Technology / SDMS / sdms@sdms.fr /
Cranes
Shipment
Plan

- SDMS presentation
- General informations
- Achievements (ALCATEL, VIRGO)
- Tritium-β spectrometer
Tritium-β spectrometer

- **Geometrical Shape and Main Characteristics**
- **Assumption and Calculation Results**
 - Calculation method by means of finite element analysis such as ANSYS
- **Material and Surface Preparation**
- **Construction Method**
 - Shop manufacture and site works
- **Performances to be Expected**
 - Expected outgassing rate
- **Magnetic Permeability**
- **Size Optimisation and Precaution**
- **Welding Considerations in Respect with Ultra-Vacuum Conditions**
General drawing
Updated Details
Lower part
Upper part
Support
Assembly
Results

- CODAP / Working temperature at 400°C
- SHELL Ø7000 / 20 mm
- STIFFENING RINGS / 200 x 40
- CONICAL SHELL / 20 mm
- STIFFENING RINGS / 200 x 40
- HEMI-HEAD / 15 mm
- SHELL Ø1000 / 10 mm
Manufacturing process

- Hot rolled plates (thickness >6mm)
- Mechanical polishing (+ plastic layer)
- Cutting / Forming
- Assembly using a specific jig (the protective plastic layer is kept during manufacturing operations)
- Nozzles DN1500, DN1000 and others
- Manufacture of a specific tool for site assembly works
- Transportation and assembly on site, tests and adjustments
 - Welding
 - Electropolishing
 - Final cleaning
Conclusions

- Outgassing rate: 10^{-13} mbar.l.s$^{-1}$.cm$^{-2}$ after several baking treatments at the temperature of 400°C
- Leak rate $< 10^{-12}$ mbar l / s
- Magnetic permeability:
 - 1.4429 X2CrNiMoN 17-13-3 or 1.4406 X2CrNiMoN 17-11-2
 - 1.4307 or 1.4404

Acknowledgements:
- SDMS staff
- VIRGO staff (Mr MUGNIER)
Thank you for your attention